Skip to content Skip to navigation

Nano and Biomaterials

Nanotechnology is shaping the practice of medicine, promising advances of unprecedented scope. 

It is highly likely that many chronic diseases now considered incurable — including several types of cancer — will ultimately yield to molecular medicine. Innovative diagnostic procedures will allow physicians to detect anomalies at the cellular level, greatly enhancing the likelihood of desirable treatment outcomes.  New nanomaterials and biomaterials ultimately will result in sophisticated prosthetic devices, even synthetic or bioengineered organs. The Department of Materials Science and Engineering is working with allied departments to accelerate the development and deployment of these materials.
 

Nanoscale 'stealth' probe slides into cell walls seamlessly.  (Melosh Group)

Stanford engineers have created a nanoscale probe they can implant in a cell wall without damaging the wall. The probe could allow researchers to listen in on electrical signals within the cell. That could lead to a better understanding of how cells communicate or how a cell responds to medication. The probe could also provide a better way of attaching neural prosthetics and with modification, might be an avenue for inserting medication inside a cell. 
 

Stanford-led research team aims for rapid detection of radiation dose (Wang Group)

Researchers think blood proteins may hold key to developing instruments for use by first-responders, labs in the event of nuclear incidents.
 

Stanford researchers' magnetic nanotags spot cancer in mice earlier than current methods (Wang Group)

Improved magnetic-nano sensor chips are up to 1,000 times more sensitive than current methods of cancer detection — and can scan any bodily fluid with high accuracy and search for up to 64 cancer-associated proteins simultaneously.

Related People

Eric Andrew Appel

Assistant Professor of Material Science and Engineering and, by courtesy, of Bioengineering

Sarah Heilshorn

Associate Professor of Materials Science and Engineering and, by courtesy, of Chemical Engineering and of Bioengineering

Nicholas Melosh

Associate Professor of Materials Science and Engineering and of Photon Science

Shan X. Wang

Professor of Materials Science and Engineering and of Electrical Engineering and, by courtesy, of Radiology (Molecular Imaging Program at Stanford)